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Abstract
We review and summarize recent theoretical and experimental work on electron
spin dynamics in quantum dots and related nanostructures due to hyperfine
interaction with surrounding nuclear spins. This topic is of particular interest
with respect to several proposals for quantum information processing in solid
state systems. Specifically, we investigate the hyperfine interaction of an
electron spin confined in a quantum dot in an s-type conduction band with
the nuclear spins in the dot. This interaction is proportional to the square
modulus of the electron wavefunction at the location of each nucleus leading
to an inhomogeneous coupling, i.e. nuclei in different locations are coupled
with different strengths. In the case of an initially fully polarized nuclear spin
system an exact analytical solution for the spin dynamics can be found. For not
completely polarized nuclei, approximation-free results can only be obtained
numerically in sufficiently small systems. We compare these exact results with
findings from several approximation strategies.
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1. Introduction

In recent years an extraordinary and increasing interest in spin-dependent phenomena in
semiconductors has developed in the solid state physics community [1, 2]. These research
activities are often labelled by the keyword ‘spintronics’ which summarizes the entire multitude
of efforts towards using the electron spin rather than, or in combination with, its charge, for
information processing, or even more ambitiously, quantum information processing. In fact, in
recent years a series of proposals for implementing quantum computation in solid state systems
using electron and/or nuclear spins have been put forward [2–8]. In order to use the electron
spin as an information carrier, long spin decoherence times are desirable if not indispensable. A
serious possible limitation of spin coherence in semiconductors is the hyperfine interaction with
surrounding nuclear spins. In fact, in semiconductors isotopes carrying a nonzero magnetic
moment are ubiquitous. The commercial use of semiconductor technology is, so far, grossly
dominated by silicon applications. In this material the magnetic isotope 29Si, having a spin
1/2 and a magnetic moment of −0.5553 nuclear magnetons, occurs with a natural abundance
of 4.7%, together with the two spinless stable isotopes 28Si and 30Si. From these numbers,
hyperfine interaction might not appear to be a particularly relevant issue. However, the systems
presently mostly studied in the field of spin electronics and solid state quantum information
processing contain materials such as GaAs, (Ga, Al)As and InAs whose elements consist
entirely of spin-carrying isotopes with substantial magnetic moments. As will be discussed
in detail in the present review, in such systems the hyperfine coupling of electron spins to
nuclear spins can easily become an important interaction. In table 1 we summarize the natural
abundances and magnetic properties of stable spin-carrying nuclei relevant to semiconductor
systems.

A principal way of avoiding such hyperfine couplings to electron spins is to use isotopically
purified material containing only a greatly reduced amount of magnetic isotopes [9]. However,
present technology allows isotope purification of typical semiconductor materials only up
to a few hundredths of a per cent or more of unwanted isotopes remaining. This degree
of purification might, in general, not be sufficient to meet the high precision demands of
implementations of quantum information processing. Moreover, such isotopically purified
materials have often quite high prices such that they might not appear as a technologically
viable option even if the demands on precision were lower.

This review is organized as follows: in section 2 we summarize important experimental
work on electron spin dynamics in semiconductor nanostructures which have motivated the
mostly theoretical studies we are reviewing in this paper. In the following section we describe
the basic physics of the hyperfine interaction between electron and nuclear spins as it occurs
in semiconductors. Section 4 is devoted to a detailed analysis of electron spin dynamics in
quantum dots due to hyperfine interaction with nuclear spins. After specifying the details of the
model in section 4.1, we discuss the ground state and elementary properties of the underlying
Hamiltonian in section 4.1.1. There we also describe a full analytical solution for the electron
spin dynamics which can be obtained in the case of an initially fully polarized nuclear spin
system. In section 4.1.2 we outline how to solve for the eigenstates and energy levels of the
system via the Bethe ansatz technique, relying on the integrability of the hyperfine coupling
Hamiltonian. In section 4.2 we introduce different types of initial states for the nuclear spin
system. These different types of initial states lead to significantly different electron spin
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Table 1. Natural abundances, total nuclear spin quantum numbers I and nuclear magnetic
moments µI of spin-carrying stable nuclei relevant to semiconductor materials. The values for µI

are given in units of the nuclear magneton µN = eh̄/2mp, where mp is the proton mass. The data
are adopted from [71].

Natural
abundance (%) I µI

9Be 100 3/2 −1.1776
10B 19.78 3 +1.8007
11B 80.22 3/2 +2.6885
13C 1.11 1/2 +0.7024
14N 99.63 1 +0.4036
15N 0.37 1/2 −0.2831
27Al 100 5/2 +3.6414
29Si 4.70 1/2 −0.5553
31P 100 1/2 +1.1317
33S 0.76 3/2 +0.6433
67Zn 4.11 5/2 +0.8754
69Ga 60.4 3/2 +2.016
71Ga 39.6 3/2 +2.562
73Ge 7.76 9/2 −0.8792
75As 100 3/2 +1.439
77Se 7.58 1/2 +0.534
111Cd 12.75 1/2 −0.5943
113Cd 12.26 1/2 −0.6217
113In 4.28 9/2 +5.523
115In 95.72 9/2 +5.534
115Sn 0.35 1/2 −0.918
117Sn 7.16 1/2 −1.000
119Sn 8.58 1/2 −1.046
121Sb 57.25 5/2 +3.359
123Sb 42.75 7/2 +2.547
123Te 0.87 1/2 −0.7357
125Te 6.99 1/2 −0.8871
199Hg 16.84 1/2 +0.5027
201Hg 13.22 3/2 −0.5567
207Pb 22.6 1/2 +0.5895
209Bi 100 9/2 +4.080

dynamics, which are described in section 4.3. The results reported on there are based on exact
diagonalizations of the Hamiltonian for sufficiently small systems. In section 4.4 we discuss
the intimate connection between the decay of the electron spin and the generation of quantum
entanglement between the electron spin and the nuclear spin system. Section 4.5 is devoted to
the important question of spin dephasing in an ensemble of dots, as opposed to decoherence
of a single electron spin. In section 4.6 we discuss several further approximate treatments of
the electron spin dynamics that have appeared in the recent literature and compare them with
the (quasi-)approximation-freeapproaches described before. Further, mostly theoretical, work
relevant to the issue of hyperfine interaction between an electron spin bound to a quantum dot
and surrounding nuclear spins is summarized in section 4.7. We close with conclusions and
an outlook to the future in section 5.
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2. Electron spin dynamics in quantum dots

The dynamics of electron spins confined in semiconductor nanostructures is a rich and
very active field. Among the most notable developments are experiments by Kikkawa and
Awschalom [10, 11] who demonstrated remarkably large coherence times for electron spins
in n-doped bulk GaAs. This timescale can exceed 100 ns and represents the T ∗

2 time, i.e. the
transverse spin relaxation time of an ensemble of electrons. These experimental findings have
generated a great deal of prospects in the fields of spin electronics and semiconductor quantum
computing [1, 2].

A photoluminescence study of excitons localized in single GaAs quantum dots was done
by Gammon et al [12]. In a subsequent study of the magnetooptical spectra of individual
localized excitons [13] the role of electron spin hyperfine interaction with nuclear spins was
investigated. Though these experiments dealt with single GaAs quantum dots (not ensembles
of them), it was not the electron spin dynamics studied but spectra of individual localized
excitons, where the strong Coulomb interaction between an electron and a heavy hole is
important. The relaxation lifetime of electron spins for an ensemble of CdSe quantum dots of
very small diameter (20–80 Å) was measured by Gupta et al [14] using a femtosecond-resolved
Faraday rotation technique. Again, due to the small size of the dot the Coulomb interaction
between electron and hole is not negligible. Therefore, it is highly probable that the observed
short relaxation time (being of the order of nanoseconds) is due to fast spin dynamics of the
hole. The surface states could also contribute to the spin relaxation due to the small size of
the dot. Finally Epstein et al [15] have analysed the spin lifetime of photogenerated carriers
in InAs quantum dots using the Hanle effect.

The above experiments [14, 15] were performed on ensembles of quantum dots, not single
dots. Therefore the estimated spin relaxation times are T ∗

2 timescales. The experiments which
directly probe the single-electron spin relaxation were done recently by Fujisawa et al [16]
and Hanson et al [17]. The non-equilibrium tunnelling current through excited states in an
AlGaAs/GaAs quantum dot was studied using a pulse-excitation technique which measures
the energy relaxation time from the excited state to the ground state. Very low spin-flip
rates were observed, which are consistent with the theoretical predictions [18–20]. The
physical mechanisms for electron spin relaxation for delocalized states include the interplay
of spin–orbit coupling with impurity scattering and/or electron–phonon interaction and the
hyperfine interaction with surrounding nuclear spins. In recent theoretical studies Khaetskii
and Nazarov [19, 20] have concluded that the first type of mechanism is strongly suppressed
for electrons localized in quantum dots, see also [21]. As for the contribution to electron
spin decoherence due to the combined effect of the spin–orbit interaction and the spin-
independent interaction with acoustic phonons, there is an indication that, within the Markovian
approximation, which is usually applicable to this problem, T2 time can be as long as T1 time.
This is due to the fact that an additional contribution to the 1/T2 rate originating from the
fluctuations of the spin–orbit-related magnetic field along the external magnetic field direction
is proportional to the phonon density of states at zero frequency. Thus, this contribution is zero
for acoustic phonons, see [22]. These results have motivated a whole variety of theoretical
investigations on hyperfine interaction in quantum dots and related structures which will be
reviewed in this paper [22–40].

A scenario similar to an electron bound in a quantum dot is the case of a shallow phosphorus
donor in a silicon crystal, Si:P. This case is essential for the solid state quantum computing
proposal by Kane [5]. The donor electron is bound to the P atom in a large hydrogen-like orbit
with a Bohr radius of about 30 Å. The nuclear spins interacting with the electron are the central
31P and the surrounding 29Si. The T1 timescale for energy relaxation of the electron spin was



Topical Review R1813

determined by Feher and Gere [41] to be of the order of 103 s. The transverse spin decay was
investigated by Gordon and Bowers [42] using the spin-echo method, deducing a timescale T ∗

2
of the order of 500 µs, see also [43]. A very recent spin-echo study by Tyryshkin et al [44]
on P donors in natural and isotopically purified Si has reported T ∗

2 times being significantly
larger than the previous result.

Finally we mention that hyperfine interaction between electron and nuclear spins is, of
course, also investigated in higher-dimensional semiconductor nanostructures such as quantum
wells. For recent work using optical NMR techniques we refer to [45, 46].

3. Hyperfine interaction in semiconductors

Hyperfine interaction is the coupling of a nuclear magnetic moment to the magnetic field
provided by the (orbital and spin) magnetic moment of electrons. The Hamiltonian describing
this interaction as a lowest-order relativistic correction was derived in 1930 by Fermi [47]. For
an s-electron there is no orbital contribution and the Hamiltonian is [47, 48]

H = 4µ0

3I
µBµI |ψ(�rI )|2 �S �I . (1)

Here �S is the spin of the electron andψ(�rI ) is its wavefunction at the location �rI of the nucleus.
This Hamiltonian couples the electron spin to the nuclear spin �I with total spin quantum number
I and magnetic moment µI , which is represented by the operator �µI = (µI/I ) �I . Both spin
operators are taken to be dimensionless, µ0 = 4π × 10−7 V s A−1 m

−1
is the usual magnetic

constant in SI units and µB is the Bohr magneton. The leading contribution to the hyperfine
coupling for higher angular momenta of the electron looks different from (1) and is essentially
given by the usual dipolar coupling between the nuclear magnetic moment and the (orbital and
spin) magnetic moment of the electron.

For the issue of spin coherence and interaction with nuclei in semiconductors, the most
relevant case is electrons in s-type conduction bands. We shall therefore concentrate on this
case where the hyperfine coupling is described by the Hamiltonian (1). From the viewpoint
of nuclear magnetic resonance experiments this coupling is the origin of an increment in
the position of resonance lines known as the Knight shift. From the viewpoint of electron
spin resonance effects in solids this Hamiltonian describes the Overhauser field. As a general
reference on both effects we refer the reader to the textbooks by Abragam [49] and Slichter [50].

In a semiconductor crystal the electron wavefunction is a product of a Bloch amplitude
u(�r) and a modulating envelope function �(�r), ψ(�r ) = �(�r)u(�r). We therefore can rewrite
the Hamiltonian as [48]

H = 4µ0

3I
µBµIη|�(�rI )|2 �S �I (2)

with η = |u(�rI )|2. For free electrons the Bloch function is constant, |u(�r)| = 1; in a realistic
crystal |u(�r)| has maxima at the lattice positions, i.e. the locations of the nuclei, leading to
η > 1. Values for η in semiconductor systems can be estimated from electron spin resonance
experiments [48]. For InSb Gueron [51] found ηIn = 6.3 × 103, ηSb = 10.9 × 103; for GaAs
Paget et al [52] estimated ηGa = 2.7 × 103, ηAs = 4.5 × 103. From NMR experiments on 29Si
Shulman and Wyluda estimated a value of ηSi = 186 [53].
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4. Electron spin dynamics in quantum dots due to hyperfine interaction with nuclei

4.1. Modelling hyperfine interaction in quantum dots

We consider an electron confined in a semiconductor quantum dot in an s-type conduction
band. We assume the electron to be in some orbital eigenstate according to the confining
potential, e.g. the orbital ground state in the quantum dot. The remaining spin degree of
freedom is coupled to an external magnetic field �B with an electronic g factor g, and to the
spins of surrounding nuclei via the hyperfine contact interaction described in the previous
section. Thus the Hamiltonian is

H = gµB �S �B + �S
∑

i

Ai �Ii . (3)

Here the subscript i labels the nuclei and the coupling constants Ai are given by (cf (2))

Ai = Av0|�(�ri)|2 (4)

with

A = 4µ0

3I
µBµIηn0 (5)

where n0 = 1/v0 is the density of the nuclei. Provided that the electronic envelope
wavefunction �(�r) varies smoothly on the length scale given by 3

√
v0 it is appropriate to

replace the sum
∑

i Ai by an integral over space; then A = ∑
i Ai up to small corrections

to this approximation. The Hamiltonian (3) also describes the hyperfine interaction between
nuclear spins and the spin of an electron bound in a hydrogen-type orbit around a phosphorus
donor in a silicon crystal.

Let us now address the order of magnitude of the hyperfine interaction. A GaAs quantum
dot with a volume of the order of 105 nm3 contains of the order of N = 106 nuclei with a
density n0 = 45.6 nm−3. Taking into account the natural abundances of the three occurring
isotopes 69Ga, 71Ga and 75As one has an average nuclear magnetic moment of µI = 1.84 µN.
With the values for η estimated in [52] this leads to an overall coupling constant A of the
order of 10−5–10−4 eV. This is the strength of the hyperfine coupling acting on the electron
spin in the presence of a fully polarized nuclear spin system. With the effective electron g
factor g = −0.44 for GaAs this corresponds to an effective magnetic field of the order of
a few tesla. For a completely unpolarized nuclear spin system the strength of the hyperfine
field is fluctuating around zero with a typical value given by A/

√
N , where N is the number

of nuclei in the dot effectively interacting with the electron spin. Note that for GaAs all
nuclear magnetic moments are positive, leading to an antiferromagnetic sign for the hyperfine
coupling. This is different from the situation in Si:P where the magnetic moment of 31P is
positive while the surrounding 29Si have a negative nuclear magnetic moment, resulting in a
dominantly ferromagnetic coupling to the electron spin. The natural abundance of 29Si leads
to a density n0 = 2.3 nm−3. Assuming a Bohr radius of 30 Å for the hydrogen-like electron
orbit one can estimate the number of nuclei effectively interacting with the electron spin to be
of the order of a few hundred and from (5) one finds values of |A| of the order of 10−7 eV
using the estimate for η given in [53].

Another kind of interaction in the systems discussed above is the dipolar coupling between
nuclear spins. This contribution to the Hamiltonian is obtained from its classical counterpart
by expressing the magnetic moments in terms of nuclear spin operators, �µI = (µI/I ) �I . Thus
the interaction between two nuclear spins labelled by 1 and 2 is

H12 = −µ0

4π

µ1µ2

I1 I2

1

r3
12

(
3( �I1�r12)( �I2�r12)

r2
12

− �I1 �I2

)
(6)
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where �r12 is the distance vector between the nuclei. In GaAs 71Ga has the largest nuclear
magnetic moment with µI = 2.562 µN. Assuming two of such nuclei being on nearest-
neighbour sites of the underlying zinc-blende lattice one finds r12 = 0.24 nm and the energy
scale of the dipolar interaction between these two nuclei has the value (µ0/4π)µ2

I/r3
12 =

7.6 × 10−12 eV. This is an upper bound for the dipolar coupling between neighbouring nuclei
in GaAs and sets the timescale (10−4–10−5 s) on which this interaction indirectly influences the
quantum dynamics of the electron spin. As we shall see below, the largest timescales relevant
for electron spin dynamics due to hyperfine coupling are of the order of 10−6 s. Therefore, the
timescale of the dipolar coupling is much larger than the timescale provided by the hyperfine
interaction; analogous considerations can be made for the case of Si:P. In the following we
shall therefore neglect the dipolar interaction unless stated otherwise. A contribution to the
Hamiltonian which we also neglect is the coupling of the nuclear spins to the external magnetic
field. This interaction is much smaller than the Zeeman coupling of the electron spin because
of the smallness of the nuclear magneton compared with the Bohr magneton for electrons.

4.1.1. Ground state and elementary properties. If the sign of the hyperfine interaction is
ferromagnetic (A < 0, as realized by the coupling to 29Si nuclear spins) the ground state
of the Hamiltonian (3) is (for �B = 0) the fully spin-polarized multiplet with all (electron
and nuclear) spins in parallel, resulting in the maximum value of the total spin quantum
number, J = N I + 1/2. For an antiferromagnetic sign the classical ground state (neglecting
the operator nature of spins) has all nuclear spins in parallel and the electron spin pointing
opposite to them. We therefore anticipate that the true quantum mechanical ground state will
have (again for vanishing external magnetic field) the total spin quantum number J = N I−1/2.
This assumption is confirmed by our numerics. Figure 1 shows the energy spectrum of the
Hamiltonian (3) for zero magnetic field as a function of the total spin quantum number J in
a system of N = 13 nuclear spins of length I = 1/2. Clearly the ground state lies in the
subspace of Jz = (13 − 1)/2 = 6. A general state in this subspace can be written as

|ψ〉 = αS−|⇑,↑ · · · ↑〉 +
∑

i

βi√
2I

I −
i |⇑,↑ · · · ↑〉 (7)

where i labels the nuclei, |⇑,↑ · · · ↑〉 is the fully spin-polarized ground state with all spins
pointing upward and we have introduced the usual spin lowering operators for the electron
spin of length 1/2 and nuclear spins of length I . The stationary Schrödinger equation leads to
the following system of equation for the amplitudes α and βi :

−
(

I

2
A +

εz

2
+ E

)
α +

∑
i

√
I

2
Aiβi = 0 (8)

√
I

2
Aiα +

(
I

2
(A − 2Ai) +

εz

2
− E

)
βi = 0. (9)

Here E is the energy eigenvalue and we have reintroduced a finite Zeeman coupling εz = gµB B .
From the second of the above equations one finds

βi (E) =
√

I/2Aiα(E)

E − (I (A − 2Ai) + εz)/2
. (10)

The ground state energy for |εz| � A is of the order of E ≈ −AI/2. Thus the denominator
of the rhs of (10) is of the order of A. Since the couplings Ai are of the order of A/N we
see that each βi is smaller than α by a factor of the order of 1/N . Therefore |α| ≈ 1 up to
quantum corrections and all coefficients βi(E) are of the order of 1/N . Thus, the corrections
to the classical ground state (|α| = 1) are of the order of 1/N , |α|2 = 1−∑

i |βi |2 ≈ 1−1/N .
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Figure 1. Energy spectrum (in units of A > 0) of the Hamiltonian (3) for zero magnetic field as a
function of the total spin quantum number J in a system of N = 13 nuclear spins of length 1/2.
For details about the modelling of coupling constants see section 4.3.1.

In summary, for large systems (N 	 1), the ground state is essentially given by a tensor product
state with all nuclear spins in parallel and the electron spin pointing opposite to them. Excited
states with the same total spin quantum number along the direction of the nuclear polarization
are separated from the ground state by a substantial gap of the order of the coupling parameter A.

These results were obtained recently by Khaetskii et al [24] who studied the time evolution
of the classical ground state under the quantum Hamiltonian (3). These investigations were
carried out using the standard Laplace transform technique. A detailed account of the
mathematical details of this approach has been given recently in [25]. The main findings are
the following. The classical ground state for |εz| � A remains constant in time up to quantum
corrections of the order of 1/N . Starting the time evolution at t = 0 with |α(t = 0)| = 1 the
electron spin expressed in terms of its expectation value 〈Sz(t)〉 undergoes coherent oscillations
between 〈Sz(t)〉 = −1/2 and 〈Sz(t)〉 = −1/2 + O(1/N) with a period of T = 4π h̄/A over a
timescale of the order of h̄ N/A. This timescale is nothing other than the characteristic period
of precession of an individual nuclear spin in the field generated by the electron spin. At this
timescale a different nuclear spin configuration is created and, because of the spatial variation
of the hyperfine coupling constants inside the dot, this leads to a different random value of the
nuclear field seen by the electron spin and thus to its decoherence. After a time interval of this
order the oscillations fade out and the expectation value 〈Sz(t)〉 decays to a value of the order
of 〈Sz(t → ∞)〉 = −1/2 + O(1/N), see figure 2.

Thus the decaying part of the initial spin state has smallness 1/N which is due to a large
gap A seen by the electron spin through the hyperfine interaction for a fully polarized state.
As a result, only a small portion ∼1/N of the opposite (+1/2) state can be admixed. Moreover,
the decay of the electron spin turns out to be non-exponential for any external magnetic field.
In the case when the perturbative treatment is applicable (i.e. a large Zeeman field) it follows a
power law with a leading term proportional to t−3/2. The fact that the decay of the electron spin
is not exponential can be easily understood. The exponential decay occurs when the correlation
time of the randomly fluctuating field which causes the decoherence is short compared to the
decoherence time. As a result the Markovian approximation can be applied. In our case
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Figure 2. Schematic dependence of 〈Sz(t)〉 on time t for the unpolarized tensor product and fully
polarized nuclear states. The timescale for the onset of the decay ∼N/A is the same for both cases.
In the fully polarized case the magnitude of the effect is 1/N . The period of oscillations is of the
order of

√
N/A for the unpolarized and ∼1/A for the polarized case.

(This figure is in colour only in the electronic version)

the non-exponential behaviour is a result of the fact that the correlation time for the nuclear
magnetic field seen by the electron spin is itself determined by the flip-flop processes since the
internal nuclear dynamics is excluded. Thus the Markovian approximation is not valid, see for
comparison section 4.6.2.

A particular situation arises in the time evolution of the state (7) with initially |α(t =
0)| = 1 if an external Zeeman field is applied to the electron spin which approximately cancels
the initial Overhauser field, i.e. εz ≈ −AI in the above conventions [24]. Near this Zeeman
field |α|2 averaged over time is 1/2, i.e. the up and down states of the electron spin are strongly
coupled via the nuclei (see figure 3). In contrast, outside this resonance regime the value of
|α|2 is close to unity (with small 1/N corrections), i.e. 〈Sz(t)〉 = 1/2 − |α|2 is close to −1/2
at any time. The width of the resonance is ∼A/

√
N , i.e. small compared to the initial gap AI .

This abrupt change in the amplitude of oscillations of 〈Sz(t)〉 (when changing εz in a narrow
interval around AI ) can be used for an experimental detection of the fully polarized state.

Although physically not particularly realistic, it is also instructive to study the model (3)
in the case of all coupling constants being equal to each other, Ai = A/N for all i . Models
of this type were studied recently by Eto [33] and Semenov and Kim [34], see also [25]. The
technical advantage of this type of model lies in the fact that the square of the total nuclear spin
�Itot = ∑

i
�Ii is an additional conserved quantity, [H, I 2

tot] = 0. If Ai = A/N the Hamiltonian
in the absence of an external magnetic field is

H = A

2N
(( �Itot + �S)2 − �I 2

tot − �S2). (11)

Since the total spin �J = �Itot + �S can have values J = Itot ± 1/2, each value of the quantum
number Itot corresponds to two energy levels given by

E(I ) = A

2N

(
±

(
Itot +

1

2

)
− 1

2

)
. (12)
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Figure 3. The dependence of |α|2 averaged over time (〈|α(t)|2〉) on the external Zeeman field
εz for a fully polarized nuclear state. The resonance occurs at |εz | = A/2 and the width of the
resonance is ∼A/

√
N , which is much smaller than the initial gap A/2.

These energy levels are typically highly degenerate. For instance, if the nuclear spins are of
length 1/2, the different values of Itot occur with a degeneracy of(

N

N/2 − Itot

)
−

(
N

N/2 − Itot − 1

)
. (13)

As seen from equation (12), the spectrum is equidistant with a level spacing 	E = A/2N .
Therefore the time evolution of an arbitrary state is strictly periodic with a recurrence time
T = 4π h̄N/A. However, in contrast to naive expectations, even in this simple case there is
some time dependence of 〈Sz(t)〉 which cannot be described by a single frequency. Actually,
for a nuclear state with given I z

tot the solution contains all the frequencies of the form
	E = A(2Itot + 1)/2N , where Itot are all the moduli of the total nuclear momentum which
can have this projection, I z

tot.
Depending on the number and length of the nuclear spins, this can lead to shorter

periodicities in the time evolution of 〈�S(t)〉. For instance, for an odd number of half-integer
nuclear spins 2Itot + 1 is even and 〈�S(t)〉 has a period of T = 2π h̄ N/A.

4.1.2. Integrability. If all nuclear spins are of length 1/2, the spin Hamiltonian (3) has the
strong mathematical property of being integrable and solvable via an appropriate version of
the Bethe ansatz. This fact was recognized first by Gaudin in a rather formal context [54].
Consider a system of N spins 1/2 and the following sequence of operators [54, 55]:

Hi =
∑
j �=i

�σi �σ j

zi − z j
(14)

where �σi are Pauli matrices and the zi are some arbitrary coupling parameters. Obviously,
by fixing one spin i to be the central spin and adjusting the couplings to the other spins, the
operator Hi assumes the form of the Hamiltonian (3). The operators Hi commute with each
other:

[Hi ,H j ] = 0, (15)

and fulfil the sum rule∑
i

Hi = 0. (16)
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Thus, N − 1 of these operators together with the square of the total spin form a set of N
linearly independent commuting operators being bilinear in the individual spin operators.
The coordinate Bethe ansatz diagonalizing simultaneously all Hi can be summarized as
follows [54, 55]. Consider states of the form

|w1, . . . , wm〉 = F(w1) · · · F(wm)|↑ · · · ↑〉, (17)

where |↑ · · · ↑〉 is the spin-polarized state with all spins in parallel, and

F(w) =
∑

i

σ−
i

w − zi
(18)

with σ−
i = σ x

i −iσ y
i . These states are eigenstates of allHi if and only if the complex parameters

w1 . . . wm fulfil the Bethe equations

N∑
i=1

1

wk − zi
+

m∑
l=1
l �=k

2

wl −wk
= 0. (19)

For a given solution of these equations the corresponding eigenvalues are

εi(w1, . . . , wm) =
m∑

l=1

2

w − zi
+

∑
j �=i

1

zi − z j
. (20)

The eigenstates (17) are states of the highest weight in multiplets of the total spin with respect
to its z component. States lower in these multiplets can be obtained by applying the lowering
operator of the total spin, or by formally considering solutions to the Bethe equations (19) with
some wk being infinite. By counting the number of solutions of (19) it can be shown that the
Bethe ansatz produces all multiplets, i.e. all energy eigenvalues.

The coordinate Bethe ansatz outlined above has been extended to the technique of the
algebraic Bethe ansatz [56]. We also note that equations (19) are a limiting case of the Bethe
equations of the so-called Richardson model describing electron pairing in superconducting
grains [57]. This issue has attracted considerable interest recently [58–61] and an algebraic
version of the Bethe ansatz has also been presented [60].

For practical purposes, the treatment of the Bethe equations (19) is still rather complicated
and explicit results, for instance for correlation functions, are difficult to obtain [62]. In the
remainder of this review we shall therefore concentrate on techniques other than the Bethe
ansatz. It is an interesting and important question to what extent certain results, such as the
non-exponential spin decay, depend on the integrability of the model (3). We stress that this
integrability holds very generally and does not depend on a specific choice of the hyperfine
coupling constants Ai .

4.2. Different types of initial states

In the numerical simulations to be described below the electron spin is initially in a single
tensor product state with the nuclear spin system

|ψ(t = 0)〉 = |ψel〉 ⊗ |ψnuc〉 , (21)

i.e. the electron spin described by |ψel〉 is initially uncorrelated with the nuclear spins. However,
there are still quite a variety of possibilities for the initial nuclear spin state |ψnuc〉. A simple
choice would be just a tensor product of eigenstates with respect to a given quantization axis,
say, the z direction:

|ψnuc〉 = |↑〉1 ⊗ |↓〉2 ⊗ |↓〉3 ⊗ · · · ⊗ |↑〉N , (22)
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where we have for simplicity assumed the nuclear spins to be of length 1/2. A nuclear spin
state close to the above form can be generated experimentally by cooling down the nuclear
spins in a strong external magnetic field. The strong magnetic field provides a quantization axis
and suppresses dipolar interactions changing the spin projection along the field axis. Then,
due to spin–lattice relaxation processes, the nuclear spin system will end up in a state of the
type (22).

A more general possibility of a nuclear spin state is a tensor product state but with individual
polarization directions for each spin:

|ψnuc〉 = (a1|↑〉1 + b1|↓〉1)⊗ · · · ⊗ (aN|↑〉N + bN|↓〉N), (23)

where the complex numbers ai, bi parametrize the spin state and are subject to the normalization
condition |ai |2 + |bi |2 = 1. A yet more general state of the nuclear spins is a superposition of
tensor product states:

|ψnuc〉 =
∑

T

αT |T 〉, (24)

where the summation runs over all tensor product states of the form (22), i.e. over a complete
basis of the underlying Hilbert space. If one works in a subspace corresponding to a given value
of J z , this summation has to be restricted accordingly. For a nontrivial choice of the amplitudes
αT states of the above form can, in general, not be expressed as tensor product states, whatever
basis one would choose in the space of each nuclear spin. Therefore, such states are, in
general, correlated or, using the language of quantum information theory, entangled [63, 64].
A particular class of correlated nuclear states is obtained when the complex amplitudes αT

are chosen at random, only restricted by the normalization condition
∑

T |αT |2 = 1. In the
following we will refer to this type of states as randomly correlated states. As we shall see,
the type of initial state of the nuclear spin system has a profound impact on the electron spin
dynamics.

4.3. Numerical results for electron spin dynamics: product states versus randomly correlated
states

Here we review our recent numerical studies [32] of electron spin dynamics in quantum
dots modelled by the Hamiltonian (3). These investigations are based on exact numerical
diagonalizations whose technical details we summarize below.

4.3.1. Numerical method and modelling. Our simulations of the electron spin dynamics are
performed by numerically diagonalizing the Hamiltonian (3). The numerical diagonalization
makes use of the fact that the projection of the total spin �J = �S +

∑
i
�Ii on the direction of the

external field (usually chosen as the z axis) is a conserved quantity leading to a block-diagonal
structure of the Hamiltonian matrix. Therefore it is convenient to work in subspaces of a
given value of J z . The Hamiltonian is then diagonalized within such a subspace and the time
evolution of a given initial state is obtained from the eigensystem data. For a numerically
exact simulation of the time evolution of a general initial state one generally needs the full
eigensystem, i.e. all eigenvalues and corresponding eigenvectors. If the initial state involves
more than one of the above invariant subspaces of the Hamiltonian the time evolution in the
different subspaces can be superimposed. We note that this method of solving for the quantum
mechanical time evolution is non-iterative and can therefore be extended to very large times. On
the other hand it requires the full eigensystem in a given invariant subspace of the Hamiltonian
and it is the dimensions of these subspaces that limit our numerical investigations. To reduce
the numerical demands we will consider in the following nuclear spin of length I = 1/2. The
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dimensions of the invariant subspaces increase with decreasing J z , starting from the maximum
value J z = (N + 1)/2 according to a binomial distribution, where N is the number of nuclei
considered. The dimensions of the invariant subspaces become largest for the minimum value
of |J z| ∈ {0, 1/2}. For the latter case we could simulate the full time evolution for systems
with up to 14 nuclear spins.

In our simulations we will assume a spherical quantum dot using the following specific
modelling. A given number N of nuclear spins is contained in a sphere of radius

R =
(

3N

4πn0

)1/3

(25)

where n0 = 1/v0 is the density of nuclei. The electron wavefunction is given by

|�(�r)|2 =
(

1

π(R/a)2

)3/2

e−r2/(R/a)2 (26)

where the parameter a describes the confinement of the electron in the dot due to an essentially
harmonic potential (with possibly small anharmonic corrections). In the following we shall
use a = 2 such that the electron is reasonably confined in the sphere of radius R. The question
of different types of confining potentials was investigated in [30]. Moreover, we shall use the
material parameters of GaAs with n0 = 45.6 nm−3. Therefore a typical quantum dot contains
about N = 105 nuclei. To mimic their spherical distribution also in systems of smaller size
used in our simulations we choose the radial coordinate ri of the i th nucleus according to

ri =
(

3(i − (1/2))

4πn0

)1/3

(27)

with i ranging from 1 to N . The results to be presented below are obtained for an
antiferromagnetic sign of the hyperfine coupling, A > 0.

4.3.2. Results for electron spin dynamics. Figure 4 shows results for a system of N = 14
nuclear spins. This is the largest system size for which we have been able to treat the electron
spin dynamics in the presence of an unpolarized nuclear system. The upper left panel shows the
expectation value 〈Sz(t)〉 as a function of time for an initially fully polarized nuclear system
with the electron spin pointing opposite to it in the negative z direction. In the following
panels the polarization of the nuclear system is successively reduced by lowering the value
of J z in the initial state. The case of a fully unpolarized nuclear spin system is reached in
the bottom right panel with J z = −1/2. Since the value of the z component of the total spin
J is fixed the expectation values of the transversal components 〈Sx 〉 and 〈Sy〉 vanish. In all
simulations shown in figure 4 the electron spin is initially in a tensor product state with the
nuclear system. The nuclear spins themselves are initially in a randomly correlated state as
described in section 4.2.

In all cases, |〈�S(t)〉| = |〈Sz(t)〉| decreases in magnitude. With decreasing polarization
the decay becomes more pronounced and the oscillations accompanying this process get
suppressed. Note that it is the decay of the envelope in these graphs, but not the fast oscillations
themselves, that signals the decay of the spin. The distance between two neighbouring
maxima of the oscillations can depend slightly on the initial state and the coupling constants
in the Hamiltonian. However, a good estimate for this effective period is usually given by
T = 4π h̄/A, since A/2 is an estimate (neglecting quantum fluctuations) for the width of the
spectrum, i.e. the difference between the largest and the smallest eigenvalue of the Hamiltonian.

When the nuclear spin system is initially in a randomly correlated state the time evolution
of 〈Sz(t)〉 is very reproducible, in the sense that it depends only very weakly on the particular
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Figure 4. The time evolution of the electron spin in a system of N = 14 nuclear spins of length 1/2
for different degrees of polarization of the randomly correlated nuclear system. The hyperfine
coupling constants are induced by the quantum dot geometry. In all simulations the electron spin
is initially pointing downward in a tensor product with the nuclear system. In the top left panel
the nuclear spins are fully polarized in the initial state with the electron spin pointing opposite to
them (J z = 13/2). In the following panels the number of flipped nuclear spins in the initial state
is gradually increased. The case of an initially fully unpolarized (but randomly correlated) nuclear
system is reached in the bottom right panel (J z = −1/2). Here and in the following we take spins
to be dimensionless, i.e. measured in units of h̄.

representation of the initial random state. This is illustrated in figures 5 and 6 where the results
of different randomly correlated initial nuclear spin states are compared for two different
system sizes and degrees of polarization.

This behaviour of randomly correlated initial states sharply contrasts with the time
evolution of a simple tensor product nuclear spin state. Figure 7 shows the time evolution
of the electron spin for two initial tensor product states for the same system size and degree of
polarization as in figure 6. The comparison of these two figures demonstrates the significant
difference in the electron spin dynamics for these two types of initial conditions in the nuclear
system. In the case of tensor product initial states the time evolution depends significantly on
the concrete initial condition and the decay of the electron spin occurs typically more slowly
than in the case of an initially randomly correlated nuclear spin system.

4.3.3. Spin decay and quantum parallelism. In the two left panels of figure 8 we show the
time evolution of the electron spin averaged over all nuclear tensor product states for two
different system sizes and initial polarizations of the nuclear spins. The two right panels show
the corresponding data for a single randomly correlated initial nuclear state. Comparing those
plots one sees that these data are very close to the time evolution of a randomly correlated state.
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Figure 5. Electron spin dynamics for an initially randomly correlated nuclear spin system for
N = 19 nuclear spins with a moderate degree of polarization (J z = 6). The data for six completely
independent random realizations of the initial nuclear spin state are shown. The resulting electron
spin dynamics is practically independent of the realization of the initial state for this type of initial
condition.

Figure 6. Data of the same type as in figure 5 for N = 29 nuclei and J z = 12. Again, the electron
spin dynamics is practically independent of the realization of the random initial nuclear state.

This observation is also made for other system sizes and degrees of polarization and constitutes
an example of quantum parallelism [64]: the time evolution of each initially uncorrelated
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Figure 7. Electron spin dynamics for N = 29 nuclei and J z = 12. Here the initial state of the
nuclear spins is given by individual tensor product states. Different initial tensor product states
clearly lead to a significantly different time evolution of the electron spin. As seen in figure 6 this
is strikingly different from randomly correlated initial conditions.

(and therefore classical-like) nuclear state is present in the evolution of a linear superposition
of all such states. In other words, the time evolutions of all uncorrelated classical-like states are
performed in parallel in the time evolution of the randomly correlated state. An experimental
consequence of this observation is that, if the electron spin dynamics would be detected on an
array of independent quantum dots, one could not distinguish whether the nuclear spin system
in each dot was initially randomly correlated or in an uncorrelated tensor product state. In
other words, the spin dynamics of a randomly correlated pure state of the nuclear system in a
single dot cannot be distinguished from a mixed state of an ensemble of dots.

As seen above, for randomly correlated initial nuclear states the time evolution of the
electron spin does not practically depend on the concrete realization of the random nuclear
state and mimics closely the average over all tensor product initial conditions. This observation
relies on the cancellation of off-diagonal terms α∗

TαT ′ 〈⇓, T | �S(t)|⇓, T ′〉, T �= T ′, due to the
randomness in the phases of the coefficients αT . In this sense our system has a self-averaging
property. This can be checked explicitly by reducing this randomness. The left panel of figure 9
shows the time evolution of a randomly correlated state where the amplitudes αT are restricted
to have a non-negative real and imaginary part. This time evolution turns out to be similarly
reproducible as before, i.e. it does not depend on the concrete realization of the initial random
state, but it is clearly different from the former case since the cancellation of off-diagonal
contributions is inhibited. For comparison we show in the right panel of figure 9 data where
the amplitudes in the initial nuclear spin state have a random phase but are restricted to have
the same modulus. Here the proper averaging process takes place again.

The results described so far were obtained in certain subspaces of J z and for the form of
coupling constants Ai as induced by the quantum dot geometry. However, our findings do not
depend on these choices. We have also performed simulations where the initial state has an
overlap in the full Hilbert space. For a randomly correlated initial nuclear spin state the only
difference is that now transverse components 〈Sx (t)〉, 〈Sy(t)〉 of the electron spin also evolve.
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Figure 8. The two left panels show the electron spin dynamics averaged over all possible initial
tensor product states for two different system sizes and degrees of polarization. The two right panels
show the corresponding data for a single randomly correlated initial condition for the nuclear
system. As the comparison shows, the time evolution for the randomly correlated nuclear spin
system closely mimics the average over all tensor product initial states.

Figure 9. Time evolution of 〈Sz(t)〉 for two types of initially randomly correlated nuclear spin
states. In the left panel the amplitudes αT are restricted to have non-negative real and imaginary
parts, while in the right panel they all have the same modulus but completely random phases.

However, these are tiny in magnitude and oscillate around zero. For an initial tensor product
state these transverse components can become sizable and the time evolution again strongly
depends on the concrete initial tensor product state. Moreover, as mentioned earlier, the exact
form of the coupling constants is also not crucial as long as they are sufficiently inhomogeneous.
For instance, we obtain qualitatively the same results if we choose the coupling parameters
randomly from a uniform distribution.
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4.4. Decoherence and the generation of entanglement

In circumstances of quantum information processing the decay of a qubit is usually viewed
as some ‘decoherence’ process due to the environment attacking the quantum information.
As seen above, the spin decay is generically slower if the spin environment is initially in
a uncorrelated state. This finding suggests that it is advantageous for protecting quantum
information to disentangle the environment that unavoidably interacts with the qubit system.

A ‘decoherence’ process of the above kind can be viewed as the generation of entanglement
between a qubit and its environment. The system investigated here provides an illustrative
example for this statement. The entanglement in the total state |ψ(t)〉 between the central
electron spin and its environment can be measured by the von Neumann entropy of the partial
density matrix where either the electron or the environment has been traced out from the
pure-state density matrix |ψ(t)〉〈ψ(t)| [65]. Tracing out the nuclear system we have

ρel(t) =
( 1

2 + 〈Sz(t)〉 〈S+(t)〉
〈S−(t)〉 1

2 − 〈Sz(t)〉
)
. (28)

This matrix has eigenvalues λ± = 1/2 ± |〈�S(t)〉| and the measure of entanglement is
E(|ψ(t)〉) = −λ+ logλ+−λ− logλ−. Thus, the formation of expectation values |〈�S(t)〉| �= 1/2
(or, in the case of fixed J z , just |〈Sz(t)〉| �= 1/2) is a manifestation of the entanglement between
the electron spin and the nuclear spin system. The maximum entanglement, E = log 2, is
achieved if the electron spin has decayed completely, as measured by the expectation values
of its components, 〈�S(t)〉 = 0. The generation of quantum entanglement between the electron
spin and the nuclear spin system signalled by a reduced value of 〈�S(t)〉 is a main crucial
difference between the quantum system studied here and its classical ‘counterpart’ described by
a system of Landau–Lifshitz equations. These equations can be obtained from the Heisenberg
equations of motion for the quantum system, ∂ �S/∂ t = i [H, �S]/h̄, ∂ �Ii/∂ t = i [H, �Ii ]/h̄, by
performing expectation values on both sides within spin-coherent states and assuming that the
expectation values of all operator products factorize to products of expectation values. This
procedure becomes exact in the classical limit [66]. The resulting equations do not contain
operators any more but just describe the dynamics of three-component vectors (classical spins)
of fixed length. We have performed simulations of such a classical spin system by solving the
Landau–Lifshitz equation via the fourth-order Runge–Kutta scheme. As a result, the central
classical spin performs an irregular chaotic motion which does not show any similarity to the
results for the quantum spin-1/2 case. In particular all qualitative features of quantum effects
such as the generation of entanglement (signalled by a decay of spins as measured by their
expectation values) are not present in such a time evolution. Therefore the Landau–Lifshitz
equation provides only a rather poor description of the underlying quantum system.

We finally consider the nuclear spin correlator C(t) = 〈I z(t)I z(0)〉, �I = ∑
i
�Ii , which

can be measured directly by local NMR, like measurements such as magnetic resonance force
microscopy [67]. In a subspace of given J z and the electron spin pointing downwards initially
this quantity is C(t) = (J z −〈Sz(t)〉)(J z + 1/2). A realistic initial state will have its dominant
weight in a series of subspaces with neighbouring J z centred around some value. Then the time
evolution of 〈Sz(t)〉 is very similar in these subspaces and the dynamics of the total nuclear
spin can be mapped out by measuring the electron spin and vice versa.

4.5. Averaging over nuclear configurations. Dephasing time for an ensemble of dots

In section 4.1.1 we have seen (see also section 4.6.1) that the decay of 〈Sz(t)〉 for the initial
tensor product state occurs starting from the time t > h̄ N/A, with h̄ N/A  10−6 s in
GaAs dots. On the other hand, the electron spin precesses in the net nuclear field with the
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characteristic period ω−1
N  h̄

√
N/A  10−8–10−9 s. Thus we see that the electron spin

undergoes many precessions in a given nuclear field �hN = ∑
i Ai〈 �Ii 〉 (for a given nuclear

configuration) before decoherence sets in due to the non-uniform hyperfine couplings Ai .
This behaviour changes dramatically when we average over nuclear configurations [24]. Let
us average CT (t) = 〈T |Sz(t)− Sz(0)|T 〉 over all initial tensor product nuclear configurations
|T 〉. For that purpose we calculate CT (t) exactly by treating the nuclear field purely classically,
i.e. as a c-number. Then we obtain

CT (t) = h2
N⊥

2h2
N

(1 − cos(hNt)), (29)

where hN =
√

h2
Nz

+ h2
N⊥ is the nuclear field, with h2

N⊥ = h2
Nx

+ h2
Ny

. Again, the value

of hN corresponds to a given nuclear tensor product state |T 〉. We average equation (29)
over a Gaussian distribution for hN, i.e. over P(hN) ∝ exp(−3h2

N/2ω
2
N). Defining Ccl(t) =∫

dhN P(hN)CT (t), we obtain

Ccl(t) = 1

3

[
1 +

(
ω2

Nt2

3
− 1

)
e−ω2

N t2/6

]
. (30)

Thus we get a very rapid (Gaussian) decay of Ccl(t) for t 	 ω−1
N , which means that the

dephasing time is
√

N/A. From the above equation we see that 〈Sz(t)〉 saturates at 1/3 of
its initial value of −1/2. An important approximation used here is the classical treatment of
the nuclear field as a c-number (not an operator). The important qualitative point we want
to illustrate here is the difference between the decoherence of an electron in an individual
quantum dot compared to the case of an ensemble of dots.

Investigations similar in spirit to the above considerations were performed by Merkulov
et al [30] who have also considered the problem of the electron spin dephasing due to the
hyperfine interaction for an ensemble of dots. As was already mentioned above, the field
exerted on the electron spin by hyperfine interaction with surrounding nuclei is typically much
larger at N 	 1 than the field the electron provides to an individual nucleus. Following this
observation Merkulov et al [30] observed several timescales with different decay laws. At
times shorter than h̄N/A they have considered an approximation where the nuclear spins are
assumed to be static on the typical timescale of the electron spin dynamics. That is, in an
individual quantum dot the electron spin dynamics is approximated by a coherent rotation
in the hyperfine field provided by the ‘frozen’ nuclear spin configuration. Dephasing of the
electron spin is then obtained by averaging over an ensemble of dots with individual nuclear
spin configurations. Then they obtained essentially the same formula, see equation (30),
with the same timescale-h̄

√
N/A. The resulting dephasing times T ∗

2 obtained in [30] are in
reasonable agreement with experiments [14, 15].

Note that, at a later timescale (t 	 h̄ N/A), the authors of [30] obtained further slow
electron spin decay by considering the variations of the nuclear field direction when the
magnitude of the field is conserved, which is correct at N 	 1.

4.6. Further approximate studies of electron spin dynamics

The exact solution for the electron spin dynamics under the hyperfine coupling (3) obtained
in [24] and described briefly in section 4.1.1 is unfortunately restricted to the case of an
initially fully polarized nuclear spin system. The numerical approach described in section 4.3
allows for a (quasi-)approximation-free treatment of systems with an arbitrary degree of initial
nuclear polarization but is, in particular at lower polarization, restricted to rather small systems.
Therefore, in order to investigate the physically most interesting case of larger systems with
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initially moderate or even very low nuclear polarization, one needs to resort to approximations.
In this section we review several recent approaches.

4.6.1. Perturbation theory. The contribution to the hyperfine Hamiltonian (3) coupling to
the z component of the electron spin:

H0 = gµBSz B + Sz
∑

i

Ai I z
i (31)

is diagonal in a basis of tensor product states with respect to the z axis as formulated in
equation (22). The remaining part of the Hamiltonian:

V =
∑

i

Ai

2
(S+ I −

i + S− I +
i ), (32)

was treated in [24, 25] as a perturbation toH0. Again we shall concentrate on the case of nuclear
spins of length 1/2. Assuming the system to be initially (t = 0) in a tensor product state with
respect to the z axis (cf (22)) with the electron spin, as before, pointing downwards, the lowest
nonvanishing contribution to the electron spin dynamics in time-dependent perturbation theory
is of second order in V . Specifically, one finds

〈Sz(t)〉 = −1

2
+ 2

∑
k

|Vik |2
ω2

ik

(1 − cos(ωik t)), (33)

where the summation goes over all intermediate states |k〉 which are tensor product states of
the form (22). Vik is the matrix element of V between an intermediate state |k = ⇑, {. . . , I k

z =
−1/2, . . .}〉 and the initial state |i = ⇓, {. . . , I k

z = +1/2, . . .}〉 and ωik = (εi − εk)/h̄, where
εi and εk are the eigenvalues of |i〉 and |k〉, respectively, with respect to H0.

Evaluating this lowest-order contribution for a large (N 	 1) unpolarized system, one
finds a universal power law for the decay of 〈Sz(t)〉: for times large compared to h̄ N/A,
|〈Sz(t)〉| decays as t−3/2. This is a central finding within this perturbative approach and agrees
with the perturbative limit (i.e. large Zeeman field) of the exact solution in the fully polarized
case discussed in section 4.1.1. Note that for a weak Zeeman field εz < A/

√
N the part of

the electron spin state which decays is of the order of the initial value, in contrast to the fully
polarized case where this part is of the order of 1/N , see figure 2.

The perturbative approach has the following shortcomings: clearly, H0 and V are of the
same order of magnitude if one does not apply a very large external magnetic field. Therefore,
there is, in general, no small parameter justifying a perturbative expansion concentrating on
low orders and one would need to sum over higher orders, provided that this perturbative series
has sufficient convergence properties. In higher orders, however, one encounters increasing
divergences due to vanishing denominators in the perturbative contributions [24]. Therefore,
the findings obtained from the low-order result (33) might appear not very reliable. Indeed,
from the exact solution in the fully polarized case [24, 25] (cf section 4.1.1) one finds a different
(not a power) law for spin decay in the limit of low external magnetic field. However, there is
a reasonable hope that the basic conclusion from the low-order perturbative approach is still
correct, namely that a non-uniform hyperfine coupling leads to a non-exponential spin decay.

Moreover, the perturbative approach can, for technical reasons, only deal with initial states
where the nuclear spin system is in a tensor product state. As seen in section 4.3 the behaviour
of such a type of initial state depends significantly on the particular initial condition, in contrast
to the behaviour of randomly correlated initial states.
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4.6.2. Studies using Markovian approximations to the nuclear spin dynamics. Saykin et al
[31] and de Sousa and Das Sarma [28, 29] have performed investigations using, among other
simplifying assumptions, Markovian approximations to describe the dynamics of the nuclear
spins.

In [31] the situation of an electron bound to a 31P donor in a silicon matrix was studied.
The electron spin interacts with the central 31P and the surrounding 29Si nuclear spins. Then
the authors formulate a master equation for the reduced electron density matrix where the
nuclear spin dynamics is governed by a Markov process. Moreover, the total density matrix is
assumed to be separable at all times with respect to the subsystems given by the electron spin
and the nuclear spin bath and the density operator of the latter system is assumed to be time-
independent. Due to the first assumption, decoherence due to the formation of entanglement,
as described in section 4.4, is excluded since the total density matrix is taken to be always
separable [64]. As a result, the authors find an exponential decay of the elements of the
reduced density matrix to their equilibrium values, where the longitudinal relaxation time T1

and the transversal dephasing time T2 (with respect to the direction of a weak external field)
fulfil the relation T1 = T2/2. However, as already explained in section 4.1.1, the application of
the Markov approximation in this situation is not justified, which might explain that this result
differs qualitatively from the findings from the exact solution in the case of an initially fully
polarized nuclear spin system (cf section 4.1.1) and the perturbative result for the unpolarized
case (cf section 4.6.1), where a power law decay was found.

In [28, 29] the Hamiltonian (3) was studied under the assumption of strong external
magnetic field coupled to the electron spin and suppressing the spin-flip terms. Therefore, the
hyperfine interaction is approximated by (31). This approach is applicable at an external
Zeeman magnetic field which is much larger than the internal nuclear field, i.e. εz 	
h̄ωN  A/

√
N . We recall that the part of the initial electron spin state which decays due

to inhomogeneous hyperfine coupling is small under the above conditions: this part is of the
order of (h̄ωN/εz)

2 � 1, see [24, 25]. The authors of [28, 29] then introduced the nontrivial
dynamics through the dipolar interaction among the nuclear spins. This interaction is taken
into account in a truncated version, neglecting terms that change the total spin component
in the direction of the external field, consistent with the earlier approximation. Thus, in this
approximation the dipolar dynamics among the nuclear spins induces the decay of the electron
spin. As a further assumption, the nuclear spin system is then approximated as a fluctuating
field generated by a Markov process. After performing a detailed mathematical analysis
of this resulting effective model [29] the authors conclude that the electron spin decay will
occur on essentially the same timescale as the dipolar interaction among the nuclear spins,
i.e. Tn2  10−4–10−5 s. Given the various assumptions leading to this effective model, this is
a very natural result.

Applying their findings to the situation of an electron bound to a 31P donor embedded
in an Si crystal, the authors find an interesting dependence of the spin memory time TM (as
measured by spin-echo experiments) on the direction of the external field relative to the crystal.
This effect is induced by the directional dependence of the dipolar interaction and provides a
possibility to experimentally probe these results and the underlying assumptions [44].

4.7. Further studies and developments

We now summarize further, mostly theoretical, work relevant to the issue of hyperfine
interaction between an electron spin bound to a quantum dot and surrounding nuclear spins.

The relaxation rate of the longitudinal electron spin component, i.e. 1/T1, which is due to
the interplay between hyperfine interaction and dissipative phonon processes was studied by
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Erlingsson et al [23] and Erlingsson and Nazarov [27]. The approach in [27] is a semiclassical
one, introducing an internal field due to the nuclear spins which acts on the electron spin in
addition to an external magnetic field. The observed relaxation rate is very small, though this
mechanism can prevail over the mechanism which is the interplay of the spin–orbit interaction
and the spin-independent interaction with phonons [20]. It happens at very low external
magnetic fields when the corresponding T1 time is of the order of 100 s. The analogous problem
of the calculation of the T2 time which is due to the combined effect of hyperfine interaction
and phonon processes was considered recently by Semenov and Kim [40]. These authors
noticed that, due to thermal fluctuations, the electron can make spin-conserving transitions
between different orbital states. Then, because of either the energy dependence of the g factor
or different nuclear fields seen by the electron spin in different orbital states, these fluctuations
lead to electron spin decoherence (since the precession frequencies are different in different
states). These mechanisms are only important at relatively high temperatures since they are
exponentially suppressed at temperatures much smaller than the energy distance between the
neighbouring orbital states. For example, in the case of the combined effect of hyperfine
interaction and phonon processes for typical GaAs quantum dots the decoherence time is of
the order of 10 s at temperature 1 K.

Lyanda-Geller et al [26] have investigated the dependence of the relaxation rate of nuclear
spins in a quantum dot on the electronic state of the dot and concluded that the effects of a
Coulomb blockade should also be observable in nuclear relaxation in such systems.

A proposal for using the nuclear spin system as a long-lived memory for information
originally contained in the electron spin qubit was put forward by Taylor et al [37]. In a related
study, Imamoglu et al [38] have proposed an all-optical scheme for polarizing the nuclear spins
by manipulating the electron spin.

Saikin and Fedichkin [35] have investigated the influence of hyperfine interactions on gate
operations within the Si:P quantum computing proposal due to Kane [5].

The possibility of nuclear spins forming an effective quantum dot, confining electrons
through hyperfine interaction, was proposed recently by Pershin [39].

Theoretical studies on the decoherence of a two-level system coupled to surrounding spins
were also presented recently by Frasca [68]. These studies stem from a somewhat different
context but are similar in spirit to the ones reported on in this review. We also mention
a recent numerical study by Dobrovitski et al [69] on spin dynamics, stressing the role of
entropy. There a central spin is coupled inhomogeneously to an essentially non-interacting
spin environment where an Ising-like coupling was used. To allow for nontrivial dynamics the
authors introduced a magnetic field perpendicular to the z direction of the Ising coupling. In
a very recent paper [70] the same authors have numerically studied the damping of quantum
oscillations in the system of two central spins. These central spins are coupled by strong
Heisenberg exchange. This system in turn is coupled to a spin bath (which can be a nuclear
system) through inhomogeneous Heisenberg interaction, a scenario similar to the one studied
in [3]. The state of the bath is initially a random superposition of all possible basis states.
Assuming the coupling constants Ak are random, in the system of N = 13 bath spins the
authors observed a two-step decoherence process. Initially, decoherence is very fast and after
the first step the oscillations of z components of the central spins Sz

1(t) and Sz
2(t) persist and

decay very slowly. It is interesting that the authors have managed to fit the first step’s fast
decay by equation (30), see section 4.5, which probably confirms the self-averaging occurring
for randomly correlated initial nuclear states described in section 4.3.3. The second slow step
of the decoherence process is presumably the analogue of the decay described in sections 4.1.1
and 4.6.1.
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5. Conclusions and outlook

We have reviewed the recent literature on electron spin dynamics in semiconductor
nanostructures due to hyperfine interaction with surrounding nuclear spins. This issue is
of particular interest with respect to several proposals for quantum information processing
in solid state systems. Although the basic Hamiltonian (3) looks rather simple it describes
an intricate many-body problem which, in general, does not seem to allow for an analytical
solution.

In the case of an initially fully polarized nuclear spin system an exact analytical solution
for the spin dynamics can be found. For not completely polarized nuclei approximation-
free results can only be obtained numerically in small model systems. We have compared
these exact results with findings from several approximation strategies such as perturbation
theory and (semi-)classical approximations to the nuclear spin dynamics, including Markovian
approximations.

Many of those approximations are not particularly well controlled and they suppress
important features of the full quantum system. For instance, the pronounced dependence of
the dynamics of the electron spin on the type of initial conditions for the nuclear system is
not reproduced by any of the approximation strategies which have appeared so far. Therefore,
the most obvious direction for future work is the development of possibly systematically
controlled approximation techniques which reproduce important features of the full quantum
dynamics and allow reliable predictions for realistic systems. A possible, but presumably
technically quite complicated, route for such future work is the Bethe ansatz solution outlined
in section 4.1.2. Such progress towards more reliable predictions for experimentally relevant
situations is especially desirable because of the importance of this issue to several proposals
for quantum information processing in a semiconductor environment, see in particular [3, 5],
and possibly also for other scenarios in the emerging field of spin electronics [1, 2].
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